Respuesta :

Answer with explanation:

The formula to find the standard error :-

[tex]S.E.=\sqrt{\dfrac{P\cdot Q}{n}}[/tex], where n is the sample size , P is the population proportion and Q=1-P .

Given : The population proportion [tex]: P=0.55[/tex]

Then, [tex]Q=1-0.55=0.45[/tex]

For n=100

[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{100}}\\\\\Rightarrow\ S.E.\approx0.0497[/tex]

For n=200

[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{200}}\\\\\Rightarrow\ S.E.\approx0.0352[/tex]

For n=500

[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{500}}\\\\\Rightarrow\ S.E.\approx0.0222[/tex]

For n=1000

[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{1000}}\\\\\Rightarrow\ S.E.\approx0.0157[/tex]