The formula to find the standard error :-
[tex]S.E.=\sqrt{\dfrac{P\cdot Q}{n}}[/tex], where n is the sample size , P is the population proportion and Q=1-P .
Given : The population proportion [tex]: P=0.55[/tex]
Then, [tex]Q=1-0.55=0.45[/tex]
For n=100
[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{100}}\\\\\Rightarrow\ S.E.\approx0.0497[/tex]
For n=200
[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{200}}\\\\\Rightarrow\ S.E.\approx0.0352[/tex]
For n=500
[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{500}}\\\\\Rightarrow\ S.E.\approx0.0222[/tex]
For n=1000
[tex]S.E.=\sqrt{\dfrac{(0.55)\cdot (0.45)}{1000}}\\\\\Rightarrow\ S.E.\approx0.0157[/tex]