Answer: [tex]60.8\°C[/tex]
Explanation:
The heat absorbed [tex]Q[/tex] is given by:
[tex]Q=(m) (c) \Delta T[/tex] (1)
Where:
[tex]Q=5.03 (10)^{5} J[/tex]
[tex]m=3070 g[/tex] is the mass of water
[tex]c=4.18 \frac{J}{g \°C}[/tex] is the specific heat of water
[tex]\Delta T=T_{f}-T_{i}[/tex] is the variation in temperature, being the final temperature [tex]T_{f}=100\°C[/tex] which is the boiling temperature of water
[tex]T_{i}[/tex] is the initial temperature
Finding [tex]\Delta T[/tex]:
[tex]\Delta T=\frac{Q}{(m)(c)}[/tex] (2)
[tex]\Delta T=\frac{5.03 (10)^{5} J}{(3070 g)(4.18 \frac{J}{g \°C})}[/tex] (3)
[tex]\Delta T= 39.19 \°C[/tex] (4)
Knowing [tex]\Delta T[/tex] and [tex]T_{f}[/tex] we can find [tex]T_{i}[/tex]:
[tex]\Delta T=T_{f}-T_{i}[/tex]
[tex]T_{i}=T_{f} - \Delta T[/tex] (5)
[tex]T_{i}=100 \°C - 39.19 \°C[/tex] (6)
Finally:
[tex]T_{i}=60.8 \°C[/tex] This is the initial temperature of the water