Answer: The system has infinitely solutions.
Step-by-step explanation:
The given system of equations : -
[tex]-5x-4y=-4\\\Rightarrow\ -5x-4y+4=0-----(1)\\\\25x+ 20y = 20\\\Rightarrow\ 25x+20y-20=0----(2)[/tex]
Compare these equation with [tex]a_1x+b_1y+c_1=0[/tex] and [tex]a_2x+b_2y+c_2=0[/tex] respectively , we get
[tex]a_1=-5\ ;b_1=-4\ ;\ c_1=4[/tex]
[tex]a_2=25\ ;b_2=20\ ;\ c_2=-20[/tex]
Now, [tex]\dfrac{a_1}{a_2}=\dfrac{-5}{25}=\dfrac{-1}{5}[/tex]
[tex]\dfrac{b_1}{b_2}=\dfrac{-4}{20}=\dfrac{-1}{5}[/tex]
[tex]\dfrac{c_1}{c_2}=\dfrac{4}{-20}=\dfrac{-1}{5}[/tex]
Thus , [tex]\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}=\dfrac{-1}{5}[/tex]
It means these lines are coincident, thus they have infinite number of solutions.