Respuesta :
Answer: [tex]F=28.936 kg/m s^{2}[/tex]
Explanation:
According to the given information (and figure attached), the block with mass [tex]m=10 kg[/tex] has the following forces acting on it:
In the X component:
[tex]F cos(30\°) - F_{s}=0[/tex] (1)
Where:
[tex]F[/tex] is the applied force directed [tex]30\°[/tex] above the horizontal
[tex]F_{s}=\mu_{s} N[/tex] (2) is the force of static friction (which is equal to the coefficient of static friction [tex]\mu_{s}=0.3[/tex] and the Normal force [tex]N[/tex]
In the Y component:
[tex]F sin(30\°) + N - W=0[/tex] (3)
Where [tex]W=m.g[/tex] is the weight (the force of gravity) which is proportional to the multiplication of the mass [tex]m[/tex] and gravity [tex]g=9.8 m/s^{2}[/tex]
Let’s begin by combining (1) and (2):
[tex]F cos(30\°) - \mu_{s} N=0[/tex] (4)
Isolating [tex]N[/tex] from (3):
[tex]N=mg – F sin(30\°)[/tex] (5)
Substituting (5) in (4):
[tex]F cos(30\°) - \mu_{s} (mg – F sin(30\°))=0[/tex] (6)
[tex]F cos(30\°) - \mu_{s} mg + \mu_{s} F sin(30\°))=0[/tex]
[tex]((cos(30\°) +\mu_{s} sin(30\°)) F - \mu_{s}mg =0[/tex]
Isolating [tex]F[/tex]:
[tex]F=\frac{\mu_{s}mg}{(cos(30\°) +\mu_{s} sin(30\°)}[/tex] (7)
[tex]F=\frac{(0.3)(10 kg)(9.8 m/s^{2})}{(cos(30\°) + 0.3 sin(30\°)}[/tex]
Finally:
[tex]F=28.936 N=8.936 kgm/s^{2}[/tex] (8) This is the necessary force to overcome static friction and move the block
We can prove it by finding [tex]F_{s}[/tex] and verifying it is less than [tex]F[/tex]:
Substituting (8) in (1):
[tex]8.936 kgm/s^{2}cos(30\°) - F_{s}=0[/tex] (9)
[tex]F_{s}=25.059 kgm/s^{2}[/tex] (10) This is the static friction force
As we can see [tex]F_{s} < F[/tex]
It is the sum of all all forces acting on the body or an object. The magnitude of the force is needed to to make the block move.
Magnitude of force:
It is the sum of all all forces acting on the body or an object.
Given Here,
10 kg block experience forces
In the X- component
[tex]\rm \bold { Fcos 30^o -Fs = 0}[/tex]
Where Fs is the static force ([tex]\rm\bold { Fs = \mu^s N}[/tex] )
[tex]\rm \bold { Fcos 30^o -\mu ^s N = 0}[/tex]
In the Y -component
[tex]\rm \bold{Fsin30^o + N - W = 0}[/tex]
Where W - work ( W = mg )
[tex]\rm \bold{Fsin30^o + N - mg = 0}[/tex]
[tex]\rm \bold{ N = Fsin30^o +mg }[/tex]
Put the value of N into X component
[tex]\rm \bold { Fcos 30^o -\mu ^s ( Fsin30^o + mg)= 0}\\[/tex]
[tex]\rm \bold { Fcos 30^o +\mu _s Fsin30^o -\mu_s mg)= 0}\\[/tex]
[tex]\rm \bold { F(cos 30^o +\mu _s sin30^o) -\mu_s mg= 0}\\[/tex]
Put the values and Solve for F,
[tex]\rm \bold { F = 28.93 N = 8.936 g m/s^2 }[/tex]
Hence we can conclude that the magnitude of the force [tex]\rm \bold { F = 28.936 kg m/s^2 }[/tex] is needed to to make the block move.
To know more about static force, refer to the link:
https://brainly.com/question/24837451