The dye dilution method is used to measure cardiac output with 3 mg of dye. The dye concentrations, in mg/L, are modeled by c(t) = 20te−0.6t, 0 ≤ t ≤ 10, where t is measured in seconds. Find the cardiac output. (Round your answer to three decimal places.)

Respuesta :

Answer:

Cardiac output:[tex]F=0.055 L\s[/tex]

Step-by-step explanation:

Given : The dye dilution method is used to measure cardiac output with 3 mg of dye.

To Find : Find the cardiac output.

Solution:

Formula of cardiac output:[tex]F=\frac{A}{\int\limits^T_0 {c(t)} \, dt}[/tex] ---1

A = 3 mg

[tex]\int\limits^T_0 {c(t)} \, dt =\int\limits^{10}_0 {20te^{-0.06t}} \, dt[/tex]

Do, integration by parts

[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[20t\int{e^{-0.6t} \,dt}-\int[\frac{d[20t]}{dt}\int {e^{-0.6t} \, dt]dt]^{10}_0[/tex]

[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20}{0.6}\int {e^{-0.6t} \,dt]^{10}_0[/tex]

[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20e^{-0.6t}}{(0.6)^2}]^{10}_{0}[/tex]

[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-200e^{-6}}{0.6}+\frac{20e^{-6}}{(0.6)^2}]+\frac{20}{(0.60^2}[/tex]

[tex][\int{20te^{-0.6t}} \, dt]^{10}_0=\frac{20(1-e^{-6}}{(0.6)^2}-\frac{200e^{-6}}{0.6}[/tex]

[tex][\int{20te^{-0.6t}} \, dt]^{10}_0\sim {54.49}[/tex]

Substitute the value in 1

Cardiac output:[tex]F=\frac{3}{54.49}[/tex]

Cardiac output:[tex]F=0.055 L\s[/tex]

Hence Cardiac output:[tex]F=0.055 L\s[/tex]