The basic barometer can be used to measure the height of a building. If the barometric readings at the top and at the bottom of a building are 675 and 695 mmHg, respectively, determine the height of the building. Take the densities of air and mercury to be 1.18 kg/m3 and 13,600 kg/m3, respectively.

Respuesta :

Answer: 230.50 m

Explanation:

We have the following information:

[tex]h_{Hg-TOP}=675mmHg=0.675m[/tex] the barometric reading at the top of the building

[tex]h_{Hg-BOT}=695mmHg=0.695m[/tex] the barometric reading at the bottom of the building

[tex]\rho _{air}=1.18 kg/m^{3}[/tex] density of air

[tex]\rho _{Hg}=13600 kg/m^{3}[/tex] density of mercury

[tex]g=9.8/m^{2}[/tex] gravity

And we need to find the height of the building.

In order to approach this problem, we will firstly use the following equations to find the pressure at the top of the building [tex]P_{TOP}[/tex] and the perssure at the bottom [tex]P_{BOT}[/tex]:

[tex]P_{TOP}=\rho _{Hg} g h_{Hg-TOP}[/tex] (1)

[tex]P_{BOT}=\rho _{Hg} g h_{Hg-BOT}[/tex] (2)

From (1): [tex]P_{TOP}=(13600 kg/m^{3})(9.8/m^{2})(0.675m)=89964 Pa[/tex] (3)

From (2): [tex]P_{BOT}=(13600 kg/m^{3})(9.8/m^{2})(0.695m)=92629.6 Pa[/tex] (4)

Having the pressures at the top and the bottom of the building, we can calculate the variation in pressure [tex]\Delta P[/tex]:

[tex]\Delta P=P_{BOT} - P_{TOP}[/tex] (5)

[tex]\Delta P=92629.6 Pa - 89964 Pa=2665.6 Pa[/tex] (6)

On the other hand, we have a column of air with a cross-section area [tex]A[/tex] and the same height of the building, lets name it [tex]h_{air}[/tex].

As pressure is defined as the force [tex]F[/tex] exerted on a specific area [tex]A[/tex], we can write:

[tex]\Delta P=\frac{F}{A}[/tex] (7)

If we isolate [tex]F[/tex] we have:

[tex]F= A \Delta P[/tex] (8)

Also, the force gravity exerts on this column of air (its weight) is:

[tex]F=m_{air} g[/tex] (9)

Knowing the density of air is: [tex]\rho_{air}=\frac{m_{air}}{V_{air}}[/tex] (10)

where the volume of air can be written as: [tex]V_{air}=(A)(h_{air})[/tex] (11)

Substituting (1) in (10):

[tex]\rho_{air}=\frac{m_{air}}{(A)(h_{air}}[/tex] (12)

Isolating [tex]m_{air}[/tex]:

[tex]m_{air}=(\rho_{air}) (A) (h_{air})[/tex] (13)

Substituting (13) in (9):

[tex]F=(\rho_{air}) (A) (h_{air}) (g)[/tex] (14)

Matching (8) and (14)

[tex]A \Delta P=(\rho_{air}) (A) (h_{air}) (g)[/tex] (15)

Isolating [tex]h_{air}[/tex]:

[tex]h_{air}=\frac{\Delta P}{g \rho_{air}}[/tex] (16)

Substituting the known and calculated values:

[tex]h_{air}=\frac{2665.6 Pa}{(9.8m/s^{2}) (1.18 kg/m^{3})}[/tex] (17)

Finally:

[tex]h_{air}=230.50 m[/tex] This is the height of the building