Answer:
The range of [tex]\frac{8}{3}-5mx[/tex] is (-9,-3).
Step-by-step explanation:
The given compound inequality is
[tex]9<15mx-8<27[/tex]
We need to find the range of values of [tex]\frac{8}{3}-5mx[/tex].
Let [tex]y=\frac{8}{3}-5mx[/tex]
Divide each side of the given compound inequality by 3.
[tex]\frac{9}{3}<\frac{15mx-8}{3}<\frac{27}{3}[/tex]
[tex]3<\frac{15mx}{3}-\frac{8}{3}<9[/tex]
[tex]3<5mx-\frac{8}{3}<9[/tex]
Multiply each side by -1.
If we multiply an inequality by a negative number, then the sign of inequality is changed.
[tex]3(-1)>(5mx-\frac{8}{3})(-1)>9(-1)[/tex]
[tex]-3>-5mx+\frac{8}{3}>-9[/tex]
[tex]-3>\frac{8}{3}-5mx>-9[/tex]
[tex]-3>y>-9[/tex]
Therefore the range of [tex]\frac{8}{3}-5mx[/tex] is (-9,-3).