If 9<15mx-8<279<15mx−8<279, is less than, 15, m, x, minus, 8, is less than, 27, where mmm is a positive constant, what is the possible range of values of \dfrac{8}{3}-5mx 3 8 ​ −5mxstart fraction, 8, divided by, 3, end fraction, minus, 5, m, x?

Respuesta :

Answer:

The range of [tex]\frac{8}{3}-5mx[/tex] is (-9,-3).

Step-by-step explanation:

The given compound inequality is

[tex]9<15mx-8<27[/tex]

We need to find the range of values of  [tex]\frac{8}{3}-5mx[/tex].

Let [tex]y=\frac{8}{3}-5mx[/tex]

Divide each side of the given compound inequality by 3.

[tex]\frac{9}{3}<\frac{15mx-8}{3}<\frac{27}{3}[/tex]

[tex]3<\frac{15mx}{3}-\frac{8}{3}<9[/tex]

[tex]3<5mx-\frac{8}{3}<9[/tex]

Multiply each side by -1.

If we multiply an inequality by a negative number, then the sign of inequality is changed.

[tex]3(-1)>(5mx-\frac{8}{3})(-1)>9(-1)[/tex]      

[tex]-3>-5mx+\frac{8}{3}>-9[/tex]

[tex]-3>\frac{8}{3}-5mx>-9[/tex]

[tex]-3>y>-9[/tex]

Therefore the range of [tex]\frac{8}{3}-5mx[/tex] is (-9,-3).