Respuesta :
Answer:
d. [tex] 4.05\times 10^3 kg[/tex]
Step-by-step explanation:
we have the following data:
density of aluminum: [tex]2,70 \times 10^3 \frac{Kg}{m^3}[/tex].
Volume of the cylinder: [tex] 1,50 m^3 [/tex]
We have the density formula:
[tex]\mbox{density}=\frac{\mbox{mass}}{\mbox{volume}}[/tex]
So, if we solve that formula for the mass we obtain:
[tex]\mbox{mass}=\mbox{density}\times {\mbox{volume}}[/tex].
Then, replacing the values of density of aluminum and cylinder volume we have
[tex]\mbox{mass}=2,70 \times 10^3\frac{kg}{m^3}\times 1,50 m^3 [/tex]
Note that the quantities are in scientific notation. Then for the computation we first multiply in a calculator [tex]2,70\times 1,50 = 4,05[/tex], and then we note that the [tex]m^3[/tex] terms are canceled. And we do not touch the term [tex]10^3[/tex] so that the result is expressed in scientific notation.
So we have that the answer is [tex]4,05 \times 10^3 kg[/tex].