Answer:
[tex] P(A_1 \cup A_2) = 0.4 [/tex]
[tex] P(A_1 \cup A_3) = 0.46 [/tex]
[tex] P(A_1 \cup A_3) = 0.43 [/tex]
[tex] P(A_1 \cup A_2 \cup A_3) = 0.53 [/tex]
Step-by-step explanation:
For the probability of events not mutually exclusive we have to add the probability of each event and substract the probability of the intersection of the events:
[tex] P(A \cup B) = P(A) + P(B) - P(A \cap B) [/tex]
For the given information we can deduce the following probabilities:
<probability of the union of A_1 and A_2>
[tex] P(A_1 \cup A_2) = 0.23 + 0.26 - 0.09 [/tex]
[tex] P(A_1 \cup A_2) = 0.4 [/tex]
<probability of the union of A_1 and A_3>
[tex] P(A_1 \cup A_3) = 0.23 + 0.28 - 0.05 [/tex]
[tex] P(A_1 \cup A_3) = 0.46 [/tex]
<probability of the union of A_2 and A_3>
[tex] P(A_1 \cup A_3) = 0.26 + 0.28 - 0.11 [/tex]
[tex] P(A_1 \cup A_3) = 0.43 [/tex]
We can also use the given information to get the probability of the union of [tex] A_{1}, A_{2}, A_{3} [/tex] . For that purpose we use the next formula:
[tex] P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) - P(A \cap B \cap C) [/tex]
So we the given information:
[tex] P(A_1 \cup A_2 \cup A_3) = 0.23 + 0.26 + 0.28 - 0.09 - 0.05 - 0.11 + 0.01 [/tex]
[tex] P(A_1 \cup A_2 \cup A_3) = 0.53 [/tex]