Respuesta :
Answer:
B
Step-by-step explanation:
1. Given mathematical statement
[tex]4x+3=x+5-2x[/tex]
So,
[tex]\begin{array}{cc}4x+3=x+5-2x&\text{ Given}\end{array}[/tex]
2. Rewrite it as
[tex]4x+3=x-2x+5[/tex]
So,
[tex]\begin{array}{cc}4x+3=x-2x+5&\text{ Commutative property of addition}\end{array}[/tex]
3. Combine like terms [tex]x[/tex] and [tex]-2x:[/tex]
[tex]4x+3=-x+5[/tex]
So,
[tex]\begin{array}{cc}4x+3=-x+5&\text{ Combine like terms}\end{array}[/tex]
4. Add [tex]x[/tex] to both sides:
[tex]4x+3+x=-x+5+x\\ \\5x+3=5[/tex]
So,
[tex]\begin{array}{cc}5x+3=5&\text{ Addition property of equality}\end{array}[/tex]
5. Subtract 3 from both sides:
[tex]5x+3-3=5-3\\ \\5x=2[/tex]
So,
[tex]\begin{array}{cc}5x=2&\text{ Subtraction property of equality}\end{array}[/tex]
6. Divide both sides by 5:
[tex]x=\dfrac{2}{5}[/tex]
So,
[tex]\begin{array}{cc}x=\dfrac{2}{5}&\text{ Division property of equality}\end{array}[/tex]
Answer:
B. Combine Like Terms; Addition Property of Equality; Subtraction Property of Equality; Division Property of Equality
Step-by-step explanation:
I took the quiz and got it right