Answer:
Part a)
[tex]v = 0.15 m/s[/tex]
Part b)
[tex]a = 0.1125 m/s^2[/tex]
Part c)
[tex]t = 0.7 s[/tex]
Part d)
[tex]x = 4.37 m[/tex]
Explanation:
Time period of the spring is given as
[tex]T = 2\pi\sqrt{\frac{m}{k}}[/tex]
now we know that
[tex]T = 4.19 s[/tex]
m = 4.90 kg
so we have now
[tex]4.19 = 2\pi\sqrt{\frac{4.90}{k}}[/tex]
[tex]k = 11 N/m[/tex]
Part a)
Amplitude = 0.100
[tex]\omega = \frac{2\pi}{T}[/tex]
[tex]\omega = \frac{2\pi}{4.19}[/tex]
[tex]\omega = 1.5 rad/s[/tex]
So speed at mean position is given as
[tex]v = A\omega[/tex]
[tex]v = 0.100(1.5) = 0.15 m/s[/tex]
Part b)
Force on it when it will reach the 0.050 m from equilibrium position is given as
[tex]F = kx[/tex]
[tex]a = \omega^2 x[/tex]
[tex]a = (1.5)^2(0.05)[/tex]
[tex]a = 0.1125 m/s^2[/tex]
Part c)
As we know that object is performing SHM so here we have
[tex]x = A sin\omega t[/tex]
[tex]0.05 = 0.100 sin\omega t[/tex]
[tex]\omega t = \frac{\pi}{6}[/tex]
[tex]t = 0.35 s[/tex]
so total time taken by object to move from 0.05 m below to 0.05 m above the mean position is 0.35 + 0.35 = 0.7 s
Part d)
As we know by force equation
mg = kx
[tex]4.90(9.81) = 11 x[/tex]
[tex]x = 4.37 m[/tex]