Respuesta :
Answer:
The exponential decay function is [tex]f(x)=\frac{3}{2}(\frac{8}{7})^{-x}[/tex] ⇒ 3rd answer
Step-by-step explanation:
* Lets explain the exponential decay function
- The general form of an exponential Function is [tex]f(x)=a(b)^{x}[/tex],
where a is the initial value and b is growth factor
- If b > 1 , then the function is exponential growth function
- If 0 < b < 1 , then the function is exponential decay function
- The function [tex]f(x) = a(b)^{-x}[/tex] can be written as
[tex]f(x)=a(\frac{1}{b})^{x}[/tex]
# Remember: if 0 < b < 1 , then 1/b > 1 , then change the negative
sign of the power by reciprocal the growth factor to decide the
function is growth or decay
* Lets solve the problem
1. [tex]f(x)=\frac{3}{4}(\frac{7}{4})^{x}[/tex]
∵ b = 7/4
∵ 7/4 is greater than 1
∴ f(x) is an exponential growth function
2. [tex]f(x)=\frac{2}{3}(\frac{4}{5})^{-x}[/tex]
- Change the (-x) to x by reciprocal (4/5) to (5/4)
∴ [tex]f(x)=\frac{2}{3}(\frac{5}{4})^{x}[/tex]
∵ b = 5/4
∵ 5/4 is greater than 1
∴ f(x) is an exponential growth function
3. [tex]f(x)=\frac{3}{2}(\frac{8}{7})^{-x}[/tex]
- Change the (-x) to x by reciprocal (8/7) to (7/8)
∴ [tex]f(x)=\frac{3}{2}(\frac{7}{8})^{x}[/tex]
∵ b = 7/8
∵ 7/8 is greater than 0 and smaller than 1 ⇒ 0 < 7/8 < 1
∴ f(x) is an exponential decay function
* The exponential decay function is [tex]f(x)=\frac{3}{2}(\frac{8}{7})^{-x}[/tex]
Answer:
3/2 8/9
Step-by-step explanation:
the fraxctions add up and i wan points but p rmosie thats the right answert