Respuesta :
Answer: 25.38 m/s
Explanation:
We have a straight line where the car travels a total distance [tex]D[/tex], which is divided into two segments [tex]d=10 miles[/tex]:
[tex]D=d+d=2d[/tex] (1)
Where [tex]d=10mi \frac{1609.34 m}{1 mi}=16093.4 m[/tex]
On the other hand, we know speed is defined as:
[tex]S=\frac{d}{t}[/tex] (2)
Where [tex]t[/tex] is the time, which can be isolated from (2):
[tex]t=\frac{d}{S}[/tex] (3)
Now, for the first segment [tex]d=16093.4 m[/tex] the car has a speed [tex]S_{1}=22m/s[/tex], using equation (3):
[tex]t_{1}=\frac{d}{S_{1}}[/tex] (4)
[tex]t_{1}=\frac{16093.4 m}{22m/s}[/tex] (5)
[tex]t_{1}=731.518 s[/tex] (6) This is the time it takes to travel the first segment
For the second segment [tex]d=16093.4 m[/tex] the car has a speed [tex]S_{1}=30m/s[/tex], hence:
[tex]t_{2}=\frac{d}{S_{2}}[/tex] (7)
[tex]t_{2}=\frac{16093.4 m}{30m/s}[/tex] (8)
[tex]t_{2}=536.44 s[/tex] (9) This is the time it takes to travel the secons segment
Having these values we can calculate the car's average speed [tex]S_{ave}[/tex]:
[tex]S_{ave}=\frac{d + d}{t_{1} + t_{2}}=\frac{2d}{t_{1} + t_{2}}[/tex] (10)
[tex]S_{ave}=\frac{2(16093.4 m)}{731.518 s +536.44 s}[/tex] (11)
Finally:
[tex]S_{ave}=25.38 m/s[/tex]