Respuesta :

Answer:

[tex]\frac{3}{4}-\frac{3}{4}i[/tex]

Step-by-step explanation:

[tex]\frac{9+3i}{4+8i}[/tex]

I assume you want to rationalize the denominator (make it real). To do this, we will multiply top and bottom by bottom's cojugate.

[tex]\frac{9+3i}{4+8i} \cdot \frac{4-8i}{4-8i}[/tex]

Use foil on top.

On bottom, since you are multiplying conjugates all you have to do is first times first and last times last.

[tex]\frac{9(4)+9(-8i)+3i(4)+3i(-8i)}{4(4)+(8i)(-8i)}[/tex]

[tex]\frac{36-72i+12i-24i^2}{16-64i^2}[/tex]

Recall [tex]i^2=-1[/tex].

[tex]\frac{36-60i-24(-1)}{16+64}[/tex]

[tex]\frac{36+24-60i}{16+64}[/tex]

[tex]\frac{60-60i}{80}[/tex]

Both the numerator and denominator share a common factor of 20:

[tex]\frac{3-3i}{4}[/tex]

You could also seperate the fraction like so:

[tex]\frac{3}{4}-\frac{3}{4}i[/tex]