Answer:
[tex]\frac{3}{4}-\frac{3}{4}i[/tex]
Step-by-step explanation:
[tex]\frac{9+3i}{4+8i}[/tex]
I assume you want to rationalize the denominator (make it real). To do this, we will multiply top and bottom by bottom's cojugate.
[tex]\frac{9+3i}{4+8i} \cdot \frac{4-8i}{4-8i}[/tex]
Use foil on top.
On bottom, since you are multiplying conjugates all you have to do is first times first and last times last.
[tex]\frac{9(4)+9(-8i)+3i(4)+3i(-8i)}{4(4)+(8i)(-8i)}[/tex]
[tex]\frac{36-72i+12i-24i^2}{16-64i^2}[/tex]
Recall [tex]i^2=-1[/tex].
[tex]\frac{36-60i-24(-1)}{16+64}[/tex]
[tex]\frac{36+24-60i}{16+64}[/tex]
[tex]\frac{60-60i}{80}[/tex]
Both the numerator and denominator share a common factor of 20:
[tex]\frac{3-3i}{4}[/tex]
You could also seperate the fraction like so:
[tex]\frac{3}{4}-\frac{3}{4}i[/tex]