Answer:
(i) Approximately 3 half lifes
(ii) [tex]4.21\times 10^{-7}\text{ g}[/tex]
Step-by-step explanation:
(i) ∵ The half life of Radon-222 is approximately 3.8 days,
So, the number of half life in 11.46 days = [tex]\frac{11.46}{3.8}[/tex] ≈ 3
(ii) Since, the half life formula is,
[tex]N=N_0 (\frac{1}{2})^{\frac{t}{t_{\frac{1}{2}}}}[/tex]
Where,
[tex]N_0[/tex] = initial quantity,
t = number of periods
[tex]t_{\frac{1}{2}}[/tex] = half life of the quantity,
Given,
N = [tex]5.2\times 10^{-8}\text{ g}[/tex]
t = 11.46 days,
[tex]t_{\frac{1}{2}} = 3.8\text{ days}[/tex]
[tex]\implies 5.2\times 10^{-8}=N_0 (\frac{1}{2})^\frac{11.46}{3.8}[/tex]
[tex]\implies N_0=2^{\frac{11.46}{3.8}}\times 5.2\times 10^{-8}\approx 4.21\times 10^{-7}\text{ g}[/tex]