Respuesta :

Answer: [tex]18.94\°[/tex]

Step-by-step explanation:

The exterior angle of a regular polygon of [tex]n[/tex] sides is given by:

[tex]\frac{360\°}{n}[/tex]

In the case of a 19-side polygon [tex]n=19[/tex]

Hence:

[tex]\frac{360\°}{19}=18.94\°[/tex]

Answer:

The measure of the exterior angle is 18. 95 Degrees.

Step-by-step explanation:

Step 1:

Given data:

Let us assume ‘I’ as interior angle of Regular polygon and ‘E’ as Exterior angle of Regular Polygon.

Exterior angle for Regular polygon is 19 sides.

By the formula:

[tex]I=\frac{180(n-2)}{n}[/tex] degrees. ------1.n(s) is the side of polygon.

Step 2:

Substitute the value of n in the given formula. Where n=19 from the given data

[tex]I=\frac{180(n-2)}{n}[/tex]degrees

Step 3:

[tex]\begin{array}{l}{I=\frac{180(19-2)}{19} \text { degrees }} \\ {I=\frac{180(17)}{19} \text { degrees }}\end{array}[/tex]

I = 3060/19

I = 161.05 degrees.

Step 4:

Measure of the exterior angles of a regular polygon is given by the formula:

E= 360 / n degrees. ----- n(s) side of polygon.

From the given data n are 19.

E = 360 / 19

E= 18. 95 Degrees.