Respuesta :
Answer: [tex]18.94\°[/tex]
Step-by-step explanation:
The exterior angle of a regular polygon of [tex]n[/tex] sides is given by:
[tex]\frac{360\°}{n}[/tex]
In the case of a 19-side polygon [tex]n=19[/tex]
Hence:
[tex]\frac{360\°}{19}=18.94\°[/tex]
Answer:
The measure of the exterior angle is 18. 95 Degrees.
Step-by-step explanation:
Step 1:
Given data:
Let us assume ‘I’ as interior angle of Regular polygon and ‘E’ as Exterior angle of Regular Polygon.
Exterior angle for Regular polygon is 19 sides.
By the formula:
[tex]I=\frac{180(n-2)}{n}[/tex] degrees. ------1.n(s) is the side of polygon.
Step 2:
Substitute the value of n in the given formula. Where n=19 from the given data
[tex]I=\frac{180(n-2)}{n}[/tex]degrees
Step 3:
[tex]\begin{array}{l}{I=\frac{180(19-2)}{19} \text { degrees }} \\ {I=\frac{180(17)}{19} \text { degrees }}\end{array}[/tex]
I = 3060/19
I = 161.05 degrees.
Step 4:
Measure of the exterior angles of a regular polygon is given by the formula:
E= 360 / n degrees. ----- n(s) side of polygon.
From the given data n are 19.
E = 360 / 19
E= 18. 95 Degrees.