Respuesta :
Answer:
Wavelength is 0.33 nm for n=1, 1.32 nm for n=4, and 3.3 nm for n=10.
Explanation:
The velocity of the electron in the nth level of hydrogen atom is,
[tex]v_{n}=\frac{2.2\times 10^{6} m/s }{n}[/tex]
Now the de Broglie wavelength can be calculated as,
[tex]\lambda=\frac{h}{mv}[/tex]
For n=1 the wavelength is,
[tex]\lambda=\frac{6.626\times 10^{-34}Js }{9.1\times 10^{-31}kg(2.2\times 10^{6} m/s) }\\\lambda=0.33\times 10^{-9}m\\ \lambda=0.33nm[/tex]
Therefore wavelength for n=1 orbit is 0.33 nm.
For n=4 the wavelength is,
[tex]\lambda=\frac{6.626\times 10^{-34}Js }{9.1\times 10^{-31}kg(\frac{2.2\times 10^{6} m/s}{4} ) }\\\lambda=1.32\times 10^{-9}m\\ \lambda=1.32nm[/tex]
Therefore wavelength for n=4 orbit is 1.32 nm.
For n=4 the wavelength is,
[tex]\lambda=\frac{6.626\times 10^{-34}Js }{9.1\times 10^{-31}kg(\frac{2.2\times 10^{6} m/s}{4} ) }\\\lambda=3.3\times 10^{-9}m\\ \lambda=3.3nm[/tex]
Therefore wavelength for n=10 orbit is 3.3 nm.
Answer:
The de Broglie wavelength for n = 1
[tex]\lambda=0.33\ nm[/tex]
The de Broglie wavelength for n = 4
[tex]\lambda=1.33\ nm[/tex]
The de Broglie wavelength for n = 10
[tex]\lambda=3.33\ nm[/tex]
Explanation:
Given that,
State of hydrogen’s atom are
n = 1,4 and 10
We need to calculate the energy for [tex]n^{th}[/tex] state
Using formula of energy
[tex]E=\dfrac{-13.6\ eV}{n^2}}[/tex]
For , n = 1
[tex]E=\dfrac{-13.6\times1.6\times10^{-19}}{1^2}}[/tex]
[tex]E_{1}=-2.176\times10^{-18}\ J[/tex]
For, n = 4
[tex]E=\dfrac{-13.6\times1.6\times10^{-19}}{4^2}}[/tex]
[tex]E_{4}=-1.36\times10^{-19}\ J[/tex]
For, n = 10
[tex]E=\dfrac{-13.6\times1.6\times10^{-19}}{10^2}}[/tex]
[tex]E_{10}=-2.176\times10^{-20}\ J[/tex]
We need to calculate the de Broglie wavelength of electrons in hydrogen’s atom
Using formula of wavelength
[tex]\lambda=\dfrac{h}{\sqrt{2mE}}[/tex]
For,n =1
[tex]\lambda=\dfrac{6.63\times10^{-34}}{\sqrt{2\times9.1\times10^{-31}\times(2.176\times10^{-18})}}[/tex]
[tex]\lambda=3.33\times10^{-10}\ m[/tex]
[tex]\lambda=0.33\ nm[/tex]
For, n=4
[tex]\lambda=\dfrac{6.63\times10^{-34}}{\sqrt{2\times9.1\times10^{-31}\times(1.36\times10^{-19})}}[/tex]
[tex]\lambda=1.33\times10^{-9}\ m[/tex]
[tex]\lambda=1.33\ nm[/tex]
For, n=10
[tex]\lambda=\dfrac{6.63\times10^{-34}}{\sqrt{2\times9.1\times10^{-31}\times(2.176\times10^{-20})}}[/tex]
[tex]\lambda=3.33\times10^{-9}\ m[/tex]
[tex]\lambda=3.33\ nm[/tex]
Hence, The de Broglie wavelength for n = 1
[tex]\lambda=0.33\ nm[/tex]
The de Broglie wavelength for n = 4
[tex]\lambda=1.33\ nm[/tex]
The de Broglie wavelength for n = 10
[tex]\lambda=3.33\ nm[/tex]