Answer:
For a: Work done for the given reaction is 2477.572 J.
For b: Work done for the given reaction is 0 J
Explanation:
To calculate the work done for the reaction, we use the equation:
[tex]W=-P\Delta V[/tex]
Ideal gas equation follows:
[tex]PV=nRT[/tex]
Relating both the above equations, we get:
[tex]W=-\Delta n_gRT[/tex] ......(1)
where,
[tex]\Delta n_g[/tex] = difference in number of moles of products and reactants = [tex]n_g_{(products)}-n_g_{(reactants)}[/tex]
R = Gas constant = 8.314 J/K.mol
T = temperature = [tex]25^oC=[273+25]K=298K[/tex]
The chemical reaction follows:
[tex]4HCl(g)+O_2(g)\rightarrow 2Cl_2(g)+2H_2O(g)[/tex]
[tex]\Delta n_g=4-5=-1[/tex]
Putting values in equation 1, we get:
[tex]W=-(-1mol)\times (8.314J/K.mol)\times 298K=2477.572J[/tex]
Hence, work done for the given reaction is 2477.572 J.
The chemical reaction follows:
[tex]2NO(g)\rightarrow N_2(g)+O_2(g)[/tex]
[tex]\Delta n_g=2-2=0[/tex]
Putting values in equation 1, we get:
[tex]W=-(0mol)\times (8.314J/K.mol)\times 298K=0J[/tex]
Hence, work done for the given reaction is 0 J.