Answer:
0.52°
Explanation:
refractive index for blue light, nb = 1.640
Refractive index for red light, nr = 1.595
Angle of incidence, i = 30°
Let the angle of refraction for blue light is rb and the angle of refraction for red light is rR.
By use of Snell's law for blue light
[tex]n_{b}=\frac{Sin i}{Sin r_{b}}[/tex]
[tex]1.64=\frac{Sin 30}{Sin r_{b}}[/tex]
[tex]1.64=\frac{0.5}{Sin r_{b}}[/tex]
[tex]r_{b}=17.75^{\circ}[/tex]
By use of Snell's law for red light
[tex]n_{R}=\frac{Sin i}{Sin r_{R}}[/tex]
[tex]1.595=\frac{Sin 30}{Sin r_{R}[/tex]
[tex]1.595=\frac{0.5}{Sin r_{R}}[/tex]
[tex]r_{R}=18.27^{\circ}[/tex]
The angle between the two beams, [tex]\theta =r_{R}-r_{b}[/tex]
θ = 18.27° - 17.75°
θ = 0.52°