Answer: The number of molecules of hemoglobin are [tex]4.5165\times 10^{21}[/tex] and the mass is 483.42 g
Explanation:
We are given:
Moles of hemoglobin = [tex]7.5\times 10^{-3}mol[/tex]
According to mole concept:
1 mole of compound contains [tex]6.022\times 10^{23}[/tex] number of atoms
So, [tex]7.5\times 10^{-3}[/tex] moles of hemoglobin compound will contain = [tex]7.5\times 10^{-3}\times 6.022\times 10^{23}=4.5165\times 10^{21}[/tex] number of molecules.
To calculate the mass of hemoglobin, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Molar mass of hemoglobin = 64456 g/mol
Moles of hemoglobin = [tex]7.5\times 10^{-3}mol[/tex]
Putting values in above equation, we get:
[tex]7.5\times 10^{-3}mol=\frac{\text{Mass of hemoglobin}}{64456g/mol}\\\\\text{Mass of hemoglobin}=483.42g[/tex]
Hence, the number of molecules of hemoglobin are [tex]4.5165\times 10^{21}[/tex] and the mass is 483.42 g