Respuesta :
Answer:
- 0.09 % of the original radioactive nucllde its left after 10 half-lives
- It will take 241,100 years for 10 half-lives of plutonium-239 to pass.
Explanation:
The equation for radioactive decay its:
[tex]N ( t) \ = \ N_0 \ e^{ \ - \frac{t}{\tau}}[/tex],
where N(t) its quantity of material at time t, [tex]N_0[/tex] its the initial quantity of material and [tex]\tau[/tex] its the mean lifetime of the radioactive element.
The half-life [tex]t_{\frac{1}{2}}[/tex] its the time at which the quantity of material its the half of the initial value, so, we can find:
[tex]N (t_{\frac{1}{2} }) \ = \ N_0 \ e^{ \ - \frac{t_{\frac{1}{2}}}{\tau}} \ = \frac{N_0}{2}[/tex]
so:
[tex]\ N_0 \ e^{ \ - \frac{t_{\frac{1}{2}}}{\tau}} \ = \frac{N_0}{2}[/tex]
[tex]e^{ \ - \frac{t_{\frac{1}{2}}}{\tau}} \ = \frac{1}{2}[/tex]
[tex]- \frac{t_{\frac{1}{2}}}{\tau}} \ = - \ ln( 2 )[/tex]
[tex]t_{\frac{1}{2}}\ = \tau ln( 2 )[/tex]
So, after 10 half-lives, we got:
[tex]N ( 10 \ t_{\frac{1}{2}}) \ = \ N_0 \ e^{ \ - \frac{10 \ t_{\frac{1}{2}}}{\tau}}[/tex]
[tex]N ( 10 \ t_{\frac{1}{2}}) \ = \ N_0 \ e^{ \ - \frac{10 \ \tau \ ln( 2 ) }{\tau}}[/tex]
[tex]N ( 10 \ t_{\frac{1}{2}}) \ = \ N_0 \ e^{ \ - 10 \ \ ln( 2 ) }[/tex]
[tex]N ( 10 \ t_{\frac{1}{2}}) \ = \ N_0 \ * \ 9.76 * 10^{-4}[/tex]
So, we got that a 0.09 % of the original radioactive nucllde its left.
Putonioum-239 has a half-life of 24,110 years. So, 10 half-life will take to pass
[tex]10 \ * \ 24,110 \ years \ = \ 241,100 \ years[/tex]
It will take 241,100 years for 10 half-lives of plutonium-239 to pass.
Answer:
percentage left = 10 %
241 000 years
Explanation:
The half life, [tex]t_{\frac{1}{2} }[/tex] of plutonium-239 is 24 100 years.
Thus, the number of half lives that result in the decrease of the nucleotide is given by the following equation:
The percentage left will be 10 %
if [tex]t_{\frac{1}{2} } = 24 100[/tex], then after 10 half-life, the decay will be:
[tex]t_{10 years} = 24 100* 10\\ = 241 000[/tex]