A practical rule is that a radioactive nuclide is essentially gone after 10 half-lives. What percentage of the original radioactive nuclide is left after 10 half-lives? How long will it take for 10 half-lives to pass for plutonium-239?

Respuesta :

Answer:

  • 0.09 % of the original radioactive nucllde its left after 10 half-lives
  • It will take 241,100 years for 10 half-lives of plutonium-239 to pass.

Explanation:

The equation for radioactive decay its:

[tex]N ( t) \ = \ N_0 \ e^{ \ -  \frac{t}{\tau}}[/tex],

where N(t) its quantity of material at time t, [tex]N_0[/tex] its the initial quantity of material and [tex]\tau[/tex] its the mean lifetime of the radioactive element.

The half-life [tex]t_{\frac{1}{2}}[/tex] its the time at which the quantity of material its the half of the initial value, so, we can find:

[tex]N (t_{\frac{1}{2} }) \ = \ N_0 \ e^{ \ -  \frac{t_{\frac{1}{2}}}{\tau}} \ = \frac{N_0}{2}[/tex]

so:

[tex]\ N_0 \ e^{ \ -  \frac{t_{\frac{1}{2}}}{\tau}} \ = \frac{N_0}{2}[/tex]

[tex]e^{ \ -  \frac{t_{\frac{1}{2}}}{\tau}} \ = \frac{1}{2}[/tex]

[tex]-  \frac{t_{\frac{1}{2}}}{\tau}} \ = - \ ln( 2 )[/tex]

[tex]t_{\frac{1}{2}}\ = \tau ln( 2 )[/tex]

So, after 10 half-lives, we got:

[tex]N ( 10 \  t_{\frac{1}{2}}) \ = \ N_0 \ e^{ \ -  \frac{10 \  t_{\frac{1}{2}}}{\tau}}[/tex]

[tex]N ( 10 \  t_{\frac{1}{2}}) \ = \ N_0 \ e^{ \ -  \frac{10 \  \tau \ ln( 2 ) }{\tau}}[/tex]

[tex]N ( 10 \  t_{\frac{1}{2}}) \ = \ N_0 \ e^{ \ -  10 \  \ ln( 2 ) }[/tex]

[tex]N ( 10 \  t_{\frac{1}{2}}) \ = \ N_0 \ * \ 9.76 * 10^{-4}[/tex]

So, we got that a 0.09 % of the original radioactive nucllde its left.

Putonioum-239 has a half-life of 24,110 years. So, 10 half-life will take to pass

[tex]10 \ * \ 24,110 \ years \ = \ 241,100 \ years[/tex]

It will take 241,100 years for 10 half-lives of plutonium-239 to pass.

Answer:

percentage left = 10 %

241 000 years

Explanation:

The half life, [tex]t_{\frac{1}{2} }[/tex] of plutonium-239 is 24 100 years.

Thus, the number of half lives that result in the decrease of the nucleotide is given by the following equation:

The percentage left will be 10 %

if [tex]t_{\frac{1}{2} } = 24 100[/tex], then after 10 half-life, the decay will be:

[tex]t_{10 years} = 24 100* 10\\ = 241 000[/tex]