contestada

a.Find a formula for
1/1×2+1/2×3+...+1/n(n+1)
by examining the values of this expression for small values of n.
b.Prove the formula you conjectured in part (a)

Respuesta :

Answer:

a) [tex]\frac{n}{n+1}[/tex]

b) Proof in explanation.

Step-by-step explanation:

a)

[tex]\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}[/tex].

So let's look at the last term for a minute:

[tex]\frac{1}{n(n+1)}[/tex]

Let's use partial fractions to see if we can find a way to write this so it is more useful to us.

[tex]\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}[/tex]

Multiply both sides by [tex]n(n+1)[/tex]:

[tex]1=A(n+1)+Bn[/tex]

Distribute:

[tex]1=An+A+Bn[/tex]

Reorder:

[tex]1=An+Bn+A[/tex]

Factor:

[tex]1=n(A+B)+A[/tex]

This implies [tex]A=1[/tex] and [tex]A+B=0[/tex] which further implies that [tex]B=-1[/tex].

This means we are saying that:

[tex]\frac{1}{n(n+1)}[/tex] can be written as [tex]\frac{1}{n}+\frac{-1}{n+1}[/tex]

We can check by combing the fractions:

[tex]\frac{n+1}{n(n+1)}+\frac{-n}{n(n+1)}[/tex]

[tex]\frac{n+1-n}{n(n+1)}[/tex]

[tex]\frac{1}{n(n+1)}[/tex]

So it does check out.

So let's rewrite our whole expression given to us using this:

[tex](\frac{1}{1}+\frac{-1}{2})+(\frac{1}{2}+\frac{-1}{3})+(\frac{1}{3}+\frac{-1}{4})+\cdots +(\frac{1}{n}+\frac{-1}{n+1})[/tex]

We should see that all the terms in between the first and last are being zeroed out.

That is, this sum is equal to:

[tex]\frac{1}{1}+\frac{-1}{n+1}[/tex]

Multiply first fraction by (n+1)/(n+1) so we can combine the fractions:

[tex]\frac{n+1}{n+1}+\frac{-1}{n+1}[/tex]

Combine fractions:

[tex]\frac{n}{n+1}[/tex]

b)

Proof:

Let's see what happens when n=1.

Original expression gives us [tex]\frac{1}{1 \cdot 2}=\frac{1}{2}[/tex].

The expression we came up with gives us [tex]\frac{1}{1+1}=\frac{1}{2}[/tex].

So it is true for the base case.

Let's assume our expression and the expression given is true for some integer k greater than 1.

We want to now show it is true for integer k+1.

So under our assumption we have:

[tex]\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\cdots \frac{1}{k(k+1)}=\frac{k}{k+1}[/tex]

So let's add the (k+1)th term of the given series on both sides:

[tex]\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\cdots \frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}[/tex]

(Now we are just playing with right hand side to see if we can put it in the form our solution which be if we can [tex]\frac{k+1}{k+2}[/tex].)

I'm going to find a common denominator which will be (k+1)(k+2):

[tex]\frac{k}{k+1} \cdot \frac{k+2}{k+2}+\frac{1}{(k+1)(k+2)}[/tex]

Combine the fractions:

[tex]\frac{k(k+2)+1}{(k+1)(k+2)}[/tex]

Distribute:

[tex]\frac{k^2+2k+1}{(k+1)(k+2)}[/tex]

Factor the numerator:

[tex]\frac{(k+1)^2}{(k+1)(k+2)}[/tex]

Cancel a common factor of [tex](k+1)[/tex]

[tex]\frac{k+1}{k+2}[/tex]

We have proven the given expression and our formula for the sum are equal for all natural numbers,n.

ACCESS MORE