Answer:
[tex]E=29\times 10^{-5}eV[/tex]
Explanation:
For n-=1 state hydrogen energy level is split into three componets in the presence of external magnetic field. The energies are,
[tex]E^{+}=E+\mu B[/tex],
[tex]E^{-}=E-\mu B[/tex],
[tex]E^{0}=E[/tex]
Here, E is the energy in the absence of electric field.
And
[tex]E^{+} and E^{-}[/tex] are the highest and the lowest energies.
The difference of these energies
[tex]\Delta E=2\mu B[/tex]
[tex]\mu=9.3\times 10^{-24}J/T[/tex] is known as Bohr's magneton.
B=2.5 T,
Therefore,
[tex]\Delta E=2(9.3\times 10^{-24}J/T)\times 2.5 T\\\Delta E=46.5\times 10^{-24}J[/tex]
Now,
[tex]Delta E=46.5\times 10^{-24}J(\frac{1eV}{1.6\times 10^{-9}J } )\\Delta E=29.05\times 10^{-5}eV\\Delta E\simeq29\times 10^{-5}eV[/tex]
Therefore, the energy difference between highest and lowest energy levels in presence of magnetic field is [tex]E=29\times 10^{-5}eV[/tex]