Respuesta :
Answer:
Given:
Thermal Kinetic Energy of an electron, [tex]KE_{t} = \frac{3}{2}k_{b}T[/tex]
[tex]k_{b} = 1.38\times 10^{- 23} J/k[/tex] = Boltzmann's constant
Temperature, T = 1800 K
Solution:
Now, to calculate the de-Broglie wavelength of the electron, [tex]\lambda_{e}[/tex]:
[tex]\lambda_{e} = \frac{h}{p_{e}}[/tex]
[tex]\lambda_{e} = \frac{h}{m_{e}{v_{e}}[/tex] (1)
where
h = Planck's constant = [tex]6.626\times 10^{- 34}m^{2}kg/s[/tex]
[tex]p_{e}[/tex] = momentum of an electron
[tex]v_{e}[/tex] = velocity of an electron
[tex]m_{e} = 9.1\times 10_{- 31} kg[/tex] = mass of electon
Now,
Kinetic energy of an electron = thermal kinetic energy
[tex]\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T[/tex]
[tex]}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}[/tex]
[tex]}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}[/tex]
[tex]v_{e} = 2.86\times 10^{5} m/s[/tex] (2)
Using eqn (2) in (1):
[tex]\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm[/tex]
Now, to calculate the de-Broglie wavelength of proton, [tex]\lambda_{e}[/tex]:
[tex]\lambda_{p} = \frac{h}{p_{p}}[/tex]
[tex]\lambda_{p} = \frac{h}{m_{p}{v_{p}}[/tex] (3)
where
[tex]m_{p} = 1.6726\times 10_{- 27} kg[/tex] = mass of proton
[tex]v_{p}[/tex] = velocity of an proton
Now,
Kinetic energy of a proton = thermal kinetic energy
[tex]\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T[/tex]
[tex]}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}[/tex]
[tex]}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}[/tex]
[tex]v_{p} = 6.674\times 10^{3} m/s[/tex] (4)
Using eqn (4) in (3):
[tex]\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm[/tex]