Answer : The value of 'K' equilibrium constant is, 0.489
Solution : Given,
Volume of [tex]HI[/tex] = [tex]200cm^3[/tex]
Volume of [tex]I_2[/tex] at equilibrium = [tex]350cm^3[/tex]
Volume of gas for 1 mole of gas = [tex]35000cm^3[/tex]
First we have to calculate the moles of [tex]HI[/tex] and [tex]I_2[/tex].
[tex]\text{Moles of }HI=\frac{Volume of }HI}{\text{Volume for 1 mole of gas}}=\frac{200cm^3}{35000cm^3}=0.0057mole[/tex]
[tex]\text{Moles of }I_2=\frac{Volume of }I_2}{\text{Volume for 1 mole of gas}}=\frac{350cm^3}{35000cm^3}=0.01mole[/tex]
Now we have to calculate the value of equilibrium constant.
The given equilibrium reaction is,
[tex]2HI(g)\rightleftharpoons H_2(g)+I_2(g)[/tex]
Initially moles 0.0057 0 0
At equilibrium (0.0057-2x) x x
The expression of [tex]K[/tex] will be,
[tex]K=\frac{[H_2][I_2]}{[HI]^2}[/tex]
Let the total volume be 'V'.
[tex]K=\frac{(\frac{x}{V})\times (\frac{x}{V})}{(\frac{0.0057-2x}{V})^2}[/tex]
As per question,
Moles of [tex]I_2[/tex] at equilibrium = x = 0.01
Now put the values of 'x' in the above expression, we get:
[tex]K=\frac{(\frac{0.01}{V})\times (\frac{0.01}{V})}{(\frac{0.0057-2\times 0.01}{V})^2}[/tex]
[tex]K=0.489[/tex]
Therefore, the value of 'K' equilibrium constant is, 0.489