Explanation:
It is given that,
Wavelength of red laser light, [tex]\lambda=632.8\ nm=632.8\times 10^{-9}\ m[/tex]
The second order fringe is formed at an angle of, [tex]\theta=53.2^{\circ}[/tex]
For diffraction grating,
[tex]d\ sin\theta=n\lambda[/tex]
[tex]d=\dfrac{n\lambda}{sin\theta}[/tex], n = 2
[tex]d=\dfrac{2\times 632.8\times 10^{-9}}{sin(53.2)}[/tex]
[tex]d=1.58\times 10^{-6}\ m[/tex]
The wavelength λ of light that creates a first-order fringe at 22 is given by :
[tex]\lambda=d\ sin\theta[/tex]
[tex]\lambda=1.58\times 10^{-6}\ sin(22)[/tex]
[tex]\lambda=5.91\times 10^{-7}\ m[/tex]
[tex]\lambda=591\ nm[/tex]
Hence, this is the required solution.