Answer with Step-by-step explanation:
Let [tex]P(n)=1^2+2^2+3^2+.....+n^2=\frac{n(n+1)(2n+1)}{6}[/tex]
Substitute n=2
Then [tex]P(2)=1+2^2=5[/tex]
[tex]P(2)=\frac{2(2+1)(4+1)}{6}=5[/tex]
Hence, P(n) is true for n=2
Suppose that P(n) is true for n=k >1
[tex]P(k)=1^2+2^2+3^2+...+k^2=\frac{k(k+1)(2k+1)}{6}[/tex]
Now, we shall prove that p(n) is true for n=k+1
[tex]P(k+1)=1^2+2^2+3^2+...+k^2+(k+1)^2=\frac{(k+1)(k+2)(2k+3)}{6}[/tex]
LHS
[tex]P(k+1)=1^2+2^2+3^2+.....+k^2+(k+1)^2[/tex]
Substitute the value of P(k)
[tex]P(k+)=\frac{k(k+1)(2k+1)}{6}+(k+1)^2[/tex]
[tex]P(k+1)=(k+1)(\frac{k(2k+1}{6})+k+1)[/tex]
[tex]P(k+1)=(k+1)(\frac{2k^2+k+6k+6}{6})[/tex]
[tex]P(k+1)=(k+1)(\frac{2k^2+7k+6}{6})[/tex]
[tex]P(k+1)=(k+1)(\frac{2k^2+4k+3k+6}{6})[/tex]
[tex]P(k+1)=\frac{(k+1)(k+2)(2k+3)}{6}[/tex]
LHS=RHS
Hence, P(n) is true for all n >1.
Hence, proved