Answer:
air velocity at the exit, v' = 15.3 m/s
Given:
Temperature, T = [tex]180^{\circ} = 273 + 180^{\circ} = 453 K[/tex]
Pressure, P = 300 kPa
Pressure, P' = 100 kPa
isentropic efficiency, [tex]\eta_{s} = 96%[/tex]
Solution:
In case of isentropic process:
[tex]\frac{T_{s}}{T} = (\frac{P'}{P})^{\frac{k - 1}{k}}[/tex]
[tex]{T_{s} = 453\times (\frac{100}{300})^{\frac{1.4 - 1}{1.4}}[/tex]
[tex]{T_{s} = 453\times 0.0233 = 330.96 K[/tex]
Using steady flow energy eqn:
[tex]h + \frac{v^{2}}{2} = h' + \frac{v'^{2}}{2}[/tex]
[tex]h - h' = \frac{v'^{2}}{2} - \frac{v^{2}}{2}[/tex]
[tex]mC_{p}(T - T') = \frac{1}{2}m(v'^{2} - v^{2})[/tex]
[tex]C_{p}(T - T') = \frac{1}{2}(v'^{2} - v^{2})[/tex]
[tex]\Delta KE = C_{p}(T - T')[/tex] (1)
Now, by using eqn (1), we can calculate the isentropic kinetic energy:
[tex]\Delta KE = C_{p}(T - T_{s})[/tex]
where
[tex]C_{p} = 1.005 kJ/kgK[/tex]
Now,
[tex]\Delta KE = 1.005\times (453 - 330.96) = 122.04 kJ/kg[/tex]
(a) For actual kinetic energy :
[tex]\eta_{s} = \frac{\Delta KE_{actual}}{\Delta KE}[/tex]
[tex]0.96 = \frac{\Delta KE_{actual}}{122.04}[/tex]
[tex]\Delta KE_{actual} = 117.16 kJ/kg[/tex]
Also,
[tex]\Delta KE_{actual} = \frac{1}{2}(v'^{2} - v^{2})[/tex] (2)
Now,
(a) air velocity at the exit, v = 0:
Using eqn (2):
[tex]117.16 = \frac{1}{2}(v'^{2})[/tex]
v' = 15.3 m/s