Explanation:
a) Using Beer-Lambert's law :
Formula used :
[tex]A=\epsilon \times C\times l[/tex]
where,
A = absorbance of solution = 0.22
C = concentration of solution = [tex]0.45 mol/dm^3=0.45 mol/L=0.45 M[/tex]
[tex]1 dm^3 = 1 L[/tex]
l = length of the cell = 3.0 cm
[tex]\epsilon[/tex] = molar absorptivity of this solution = ?
Now put all the given values in the above formula, we get the molar absorptivity of this solution.
[tex]0.22=\epsilon \times (0.45 M)\times (3.0 cm)[/tex]
[tex]\epsilon=0.163 M^{-1}cm^{-1}[/tex]
Therefore, the molar absorptivity of this solution is, [tex]1.93\times 10^{4}M^{-1}cm^{-1}[/tex]
b) [tex]A=\log \frac{I_o}{I_t}[/tex]
[tex]T=\frac{I_t}{I_o}[/tex]
[tex]A=\log \frac{1}{T}[/tex]
A = 2 × 0.22 =0.44
[tex]I_o,I_t[/tex] = Intensities of Incident light and transmitted light respectively
T = Transmittance
[tex]0.44=\log \frac{1}{T}[/tex]
T = 0.3630
c) [tex]I_o=x[/tex]
[tex]I_t=65\% of x=0.65 x[/tex]
Thickness of cell = l' =?
[tex]c = 0.75 mol/ dm^3=0.75 mol/L=0.75 M[/tex]
[tex]A=\log \frac{I_o}{I_t}=\epsilon \times C\times l[/tex]
[tex]\log \frac{x}{0.65x}=0.163 M^{-1}cm^{-1}\times 0.45 M\times l'[/tex]
l' = 1.53 cm
d) No, we cannot calculate the absorbance at 590 nm from the given data. This is because absorbance at this wavelength can be observe experimentally.