Answer:
[tex]\frac{d^{2}x }{d^{2}t }+\frac{k}{m}x+\frac{b}{m} \frac{dx}{dt}=0[/tex]
Explanation:
The spring mass equation for the damped oscillation will be,
[tex]F=-kx-bv[/tex]
Here, -bv is the damping term used in this b is damping constant, k is spring constant, x is elongation in the spring, F is the force.
[tex]ma=-kx-bv\\m\frac{d^{2}x }{d^{2}t }=-kx-b\frac{dx}{dt}\\ m\frac{d^{2}x }{d^{2}t }+kx+b\frac{dx}{dt}=0\\\frac{d^{2}x }{d^{2}t }+\frac{k}{m}x+\frac{b}{m} \frac{dx}{dt}=0[/tex]
Therefore the differential equation for the damped harmonic oscillator is,
[tex]\frac{d^{2}x }{d^{2}t }+\frac{k}{m}x+\frac{b}{m} \frac{dx}{dt}=0[/tex]