See the attachment below.

Answers:
a) [tex]L=208\pi[/tex]
b) [tex]A=0.18 cm^{2}[/tex]
Step-by-step explanation:
a) The area of the sector of a circle [tex]A_{c}[/tex] is given by:
[tex]A_{c}=\frac{rL}{2}=\frac{r^{2}\theta}{2}[/tex] (1)
Where:
[tex]r=144[/tex] is the radius
[tex]L[/tex] is the length of arc
[tex]\theta=260\°=\frac{13}{9}\pi[/tex] is the angle in radians (knowing [tex]360\°=2\pi[/tex] to make the conversion)
Isolating [tex]L[/tex] from (1) :
[tex]L=r\theta[/tex] (2)
[tex]L=144(\frac{13}{9}\pi)[/tex] (3)
[tex]L=208\pi[/tex] (4) This is the length of arc
b) If we want to find the shaded area [tex]A[/tex], we have to find the area of the sector of a circle [tex]A_{c}[/tex] and substract the area of the triangle [tex]A_{t}[/tex].
We already know [tex]A_{c}=\frac{r^{2}\theta}{2}[/tex] (5)
Where:
[tex]r=4cm[/tex]
[tex]\theta=30\°=\frac{\pi}{6}[/tex] (remembering [tex]360\°=2\pi[/tex])
Hence:
[tex]A_{c}=\frac{(4cm)^{2}(\frac{\pi}{6})}{2}[/tex] (6)
[tex]A_{c}=\frac{4}{3}\pi cm^{2}[/tex] (7) area of the sector of the circle
On the other hand, the area of a triangle is given by:
[tex]A_{t}=\frac{bh}{2}[/tex] (8)
Where:
[tex]b[/tex] is the base of the triangle
[tex]h[/tex] is the height of the triangle
If we divide this triangle in half, we will have two right triangles, each one with a height [tex]h[/tex] and a base [tex]\frac{b}{2}[/tex], and hypotenuse=4cm.
In addition, each triangle will have the following angles (in degrees): [tex]90\°[/tex], [tex]15\°[/tex] (the half of [tex]30\°[/tex]), [tex]75\°[/tex] (knowing the three inner angles of a triangle sum to [tex]180\°[/tex]).
Having this clear, let's use the trigonometric functions sine and cosine to find the values of [tex]h[/tex] and [tex]b[/tex]:
[tex]sin\alpha=\frac{Oppositeside}{Hypotenuse}[/tex] (9)
[tex]cos\alpha=\frac{Adjacentside}{Hypotenuse}[/tex] (10)
[tex]sin(15\°)=\frac{\frac{b}{2}}{4cm}[/tex] (11)
[tex]b=8sin(15\°)=2.070cm[/tex] (12) This is the base of the triangle
[tex]cos(15\°)=\frac{h}{4cm}[/tex] (13)
[tex]h=4cos(15\°)=3.86cm[/tex] (14) This is the height of the triangle
Substituting (12) and (14) in (8):
[tex]A_{t}=\frac{(2.070cm)(3.86cm)}{2}[/tex] (15)
[tex]A_{t}=3.99cm^{2} \approx 4cm^{2}[/tex] (16) This is the area of the triangle
Substracting the area of the triangle from the area of the sector of the circle:
[tex]A=A_{c}-A_{t}[/tex] (17)
[tex]A=\frac{4}{3}\pi cm^{2}- 4cm^{2}[/tex] (18)
Finally we have the area of the shaded portion:
[tex]A=0.18 cm^{2}[/tex]