Respuesta :

Answers:

a) [tex]L=208\pi[/tex]

b) [tex]A=0.18 cm^{2}[/tex]

Step-by-step explanation:

a) The area of the sector of a circle [tex]A_{c}[/tex] is given by:

[tex]A_{c}=\frac{rL}{2}=\frac{r^{2}\theta}{2}[/tex] (1)

Where:

[tex]r=144[/tex] is the radius

[tex]L[/tex] is the length of arc  

[tex]\theta=260\°=\frac{13}{9}\pi[/tex] is the angle in radians (knowing [tex]360\°=2\pi[/tex] to make the conversion)

Isolating [tex]L[/tex] from (1) :

[tex]L=r\theta[/tex] (2)

[tex]L=144(\frac{13}{9}\pi)[/tex] (3)

[tex]L=208\pi[/tex] (4)  This is the length of arc

b) If we want to find the shaded area [tex]A[/tex], we have to find the area of the sector of a circle [tex]A_{c}[/tex] and substract the area of the triangle [tex]A_{t}[/tex].

We already know [tex]A_{c}=\frac{r^{2}\theta}{2}[/tex] (5)

Where:

[tex]r=4cm[/tex]

[tex]\theta=30\°=\frac{\pi}{6}[/tex] (remembering [tex]360\°=2\pi[/tex])

Hence:

[tex]A_{c}=\frac{(4cm)^{2}(\frac{\pi}{6})}{2}[/tex] (6)

[tex]A_{c}=\frac{4}{3}\pi cm^{2}[/tex] (7) area of the sector of the circle

On the other hand, the area of a triangle is given by:

[tex]A_{t}=\frac{bh}{2}[/tex] (8)

Where:

[tex]b[/tex] is the base of the triangle

[tex]h[/tex] is the height of the triangle

If we divide this triangle in half, we will have two right triangles, each one with a height [tex]h[/tex]  and a base [tex]\frac{b}{2}[/tex], and hypotenuse=4cm.

In addition, each triangle will have the following angles (in degrees): [tex]90\°[/tex], [tex]15\°[/tex] (the half of [tex]30\°[/tex]), [tex]75\°[/tex] (knowing the three inner angles of a triangle sum to [tex]180\°[/tex]).

Having this clear, let's use the trigonometric functions sine and cosine to find the values of [tex]h[/tex] and [tex]b[/tex]:

[tex]sin\alpha=\frac{Oppositeside}{Hypotenuse}[/tex] (9)

[tex]cos\alpha=\frac{Adjacentside}{Hypotenuse}[/tex] (10)

[tex]sin(15\°)=\frac{\frac{b}{2}}{4cm}[/tex] (11)

[tex]b=8sin(15\°)=2.070cm[/tex] (12) This is the base of the triangle

[tex]cos(15\°)=\frac{h}{4cm}[/tex] (13)

[tex]h=4cos(15\°)=3.86cm[/tex] (14)  This is the height of the triangle

Substituting (12) and (14) in (8):

[tex]A_{t}=\frac{(2.070cm)(3.86cm)}{2}[/tex] (15)

[tex]A_{t}=3.99cm^{2} \approx 4cm^{2}[/tex] (16) This is the area of the triangle

Substracting the area of the triangle from the area of the sector of the circle:

[tex]A=A_{c}-A_{t}[/tex] (17)

[tex]A=\frac{4}{3}\pi cm^{2}- 4cm^{2}[/tex] (18)

Finally we have the area of the shaded portion:

[tex]A=0.18 cm^{2}[/tex]

RELAXING NOICE
Relax