Answer:
[tex]Xl=wL=69.11503383 ohm[/tex]
[tex]Xc=\frac{-1}{wC}= -578.7452476 ohm[/tex]
[tex]Z=\frac{240}{140*10^-3}=1.714285714 kilo-ohm[/tex]
[tex]R=2.223915928 kilo-ohm[/tex]
[tex]\alpha = -12.90698798 centigrades[/tex]
Explanation:
[tex]L=220*10^-3[/tex]
[tex]C=5.50*10^-6[/tex]
[tex]Vmax=240V[/tex]
[tex]Imax=140*10^-3[/tex]
[tex]w=2\pi f=2\pi *50=314.1592654[/tex]
The capacitive reactance is given by:
[tex]Xc=\frac{-1}{wC}=-578.7452476 ohm[/tex]
Now, The inductive reactance is given by:
[tex]Xl=wL=69.11503383 ohm[/tex]
By the ohm´s law, the electrical impedance is:
[tex]V=IZ[/tex]
So
[tex]Z=\frac{V}{I}[/tex]
[tex]Z=\frac{240}{140*10^-3}=1.714285714 kilo-ohm[/tex]
The total impedance is:
[tex]Z=R+jX\\\\[/tex] (*)
Where X is the total reactance given by:
[tex]X=Xl+Xc=69.11503383-578.7452476=-509.6302138[/tex]
Let´s calculate the real part of Z using (*):
[tex]R=1714.285714+509.6302138[/tex]
[tex]R=2.223915928 kilo-ohm[/tex]
Finally the angle between the current and the voltage is equal to the impedance angle:
[tex]\alpha=arctan(\frac{-509.6302138}{2223.915928})[/tex]
[tex]\alpha =-12.90698798 centigrades[/tex]