Answer:
The curl is [tex]0 \hat x -z^2 \hat y -4xy \hat z[/tex]
Explanation:
Given the vector function
[tex]\vec A (\vec r) =4x^3 \hat{x}-2x^2y \hat y+xz^2 \hat z[/tex]
We can calculate the curl using the definition
[tex]\nabla \times \vec A (\vec r ) = \left|\begin{array}{ccc}\hat x&\hat y&\hat z\\\partial/\partial x&\partial/\partial y&\partial/\partial z\\A_x&X_y&A_z\end{array}\right|[/tex]
Thus for the exercise we will have
[tex]\nabla \times \vec A (\vec r ) = \left|\begin{array}{ccc}\hat x&\hat y&\hat z\\\partial/\partial x&\partial/\partial y&\partial/\partial z\\4x^3&-2x^2y&xz^2\end{array}\right|[/tex]
So we will get
[tex]\nabla \times \vec A (\vec r )= \left( \cfrac{\partial}{\partial y}(xz^2)-\cfrac{\partial}{\partial z}(-2x^2y)\right) \hat x - \left(\cfrac{\partial}{\partial x}(xz^2)-\cfrac{\partial}{\partial z}(4x^3) \right) \hat y + \left(\cfrac{\partial}{\partial x}(-2x^2y)-\cfrac{\partial}{\partial y}(4x^3) \right) \hat z[/tex]
Working with the partial derivatives we get the curl
[tex]\nabla \times \vec A (\vec r )=0 \hat x -z^2 \hat y -4xy \hat z[/tex]