contestada

The critical angle for total internal reflection for cubic zirconia surrounded by air is 27.0°. Calculate the polarizing angle for cubic zirconia.

Respuesta :

Answer:

Polarizing angle, [tex]\theta_{P} = tan^{- 1}{2.2} = 65.56^{\circ}[/tex]

Given:

Critical angle, [tex]\theta_{cr} = 27^{\circ}[/tex]

Solution:

Now, in Total Internal Reflection (TIR), the critical angle for cubic zirconia is given by:

[tex]sin\theta_{cr} = \frac{1}{\mu_{Z}}[/tex]                      (1)

where

[tex]{\mu_{Z}[/tex] = refractive index of zirconia

From eqn (1):

[tex]\mu_{Z} = \frac{1}{sin\theta_{cr}}[/tex]

[tex]\mu_{Z} = \frac{1}{sin(27^{\circ})} = 2.2[/tex]

Now, the angle of polarization is given by:

tan[tex]\theta_{P} = \mu_{Z}[/tex]

Therefore,

[tex]\theta_{P} = tan^{- 1}{2.2} = 65.56^{\circ}[/tex]

RELAXING NOICE
Relax