Find velocity vx(t) and coordinate x(t) for a particle of mass m which is subject to the force given by: Fx = F0 e −kt , where F0 and k are known constants. The initial conditions are x = 0 and v = 1 at t = 0.

Respuesta :

Answer:

[tex]v_{x} (t)=1+\frac{ F_{0}}{km}(1-e^{-kt})[/tex]

[tex]x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}(e^{-kt}-1)[/tex]

Explanation:

Given that the force of the particle is,

[tex]F_{x}=F_{0}e^{-kt}[/tex]

Now it can be further written as

[tex]m\frac{dv}{dt}= F_{0}e^{-kt}\\\frac{dv}{dt}=\frac{ F_{0}}{m} e^{-kt}\\dv=\frac{ F_{0}}{m}e^{-kt}dt\\ v=\frac{ F_{0}}{-km}e^{-kt}+C[/tex]

Now the initial conditions are v=1 at t=0.

So,

[tex]1=\frac{ F_{0}}{-km}e^{0}+C\\C=1+\frac{ F_{0}}{km}[/tex]

Now the velocity will become.

[tex]v_{x} (t)=\frac{ F_{0}}{-km}e^{-kt}+1+\frac{ F_{0}}{km}\\v_{x} (t)=1+\frac{ F_{0}}{km}(1-e^{-kt})[/tex]

And,

[tex]\frac{dx}{dt} =1+\frac{ F_{0}}{km}(1-e^{-kt})\\dx=(1+\frac{ F_{0}}{km}(1-e^{-kt}))dt\\x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}e^{-kt}+C\\[/tex]

And, another initial condition is x=0 at t=0

[tex]0=0+\frac{ F_{0}0}{km}+\frac{ F_{0}t}{k^{2} m}e^{0}+C\\C=-\frac{ F_{0}t}{k^{2} m}[/tex]

Now,

[tex]x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}e^{-kt}+-\frac{ F_{0}t}{k^{2} m}\\x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}(e^{-kt}-1)[/tex]

ACCESS MORE