Answer:
[tex]v_{x} (t)=1+\frac{ F_{0}}{km}(1-e^{-kt})[/tex]
[tex]x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}(e^{-kt}-1)[/tex]
Explanation:
Given that the force of the particle is,
[tex]F_{x}=F_{0}e^{-kt}[/tex]
Now it can be further written as
[tex]m\frac{dv}{dt}= F_{0}e^{-kt}\\\frac{dv}{dt}=\frac{ F_{0}}{m} e^{-kt}\\dv=\frac{ F_{0}}{m}e^{-kt}dt\\ v=\frac{ F_{0}}{-km}e^{-kt}+C[/tex]
Now the initial conditions are v=1 at t=0.
So,
[tex]1=\frac{ F_{0}}{-km}e^{0}+C\\C=1+\frac{ F_{0}}{km}[/tex]
Now the velocity will become.
[tex]v_{x} (t)=\frac{ F_{0}}{-km}e^{-kt}+1+\frac{ F_{0}}{km}\\v_{x} (t)=1+\frac{ F_{0}}{km}(1-e^{-kt})[/tex]
And,
[tex]\frac{dx}{dt} =1+\frac{ F_{0}}{km}(1-e^{-kt})\\dx=(1+\frac{ F_{0}}{km}(1-e^{-kt}))dt\\x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}e^{-kt}+C\\[/tex]
And, another initial condition is x=0 at t=0
[tex]0=0+\frac{ F_{0}0}{km}+\frac{ F_{0}t}{k^{2} m}e^{0}+C\\C=-\frac{ F_{0}t}{k^{2} m}[/tex]
Now,
[tex]x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}e^{-kt}+-\frac{ F_{0}t}{k^{2} m}\\x=t+\frac{ F_{0}t}{km}+\frac{ F_{0}t}{k^{2} m}(e^{-kt}-1)[/tex]