Answer:
[tex] p_e = \sqrt{ \frac{(\ h \ w \ )^2}{{c^2}} - m_o^2c^2} [/tex]
Explanation:
If the photons got frequency w, the energy of each photon must be
[tex]E \ = \ h \ w[/tex],
so the total energy of the system must be
[tex]E_{total} \ = \ 2 \ h \ w[/tex].
The momentum for each photon will be:
[tex]p \ = \ \frac{h \ w}{c}[/tex].
But, as they are colliding head on, the total momentum of the system must be zero.
Now, for the particles, the energy must be
[tex]E \ = \ \sqrt{p^2c^2 + m_o^2c^4}[/tex].
Momentum conservation implies that the total momentum must be zero, so:
[tex]| \ \bar{p}_{electron} \ | = | \ \bar{p}_{positron} \ |[/tex],
so the squares of the momentum will be the same.
Now, this implies that the energies for the electron and the positron must be the same, so we can write:
[tex]E_{total} \ = \ 2 \ \sqrt{p^2c^2 + m_o^2c^4}[/tex].
Taking conservation of energy in consideration:
[tex]E_{total} \ = \ 2 \ \sqrt{p^2c^2 + m_o^2c^4} = \ 2 \ h \ w[/tex].
[tex] \sqrt{p^2c^2 + m_o^2c^4} = \ h \ w[/tex].
[tex] p^2c^2 + m_o^2c^4 = (\ h \ w \ )^2 [/tex].
[tex] p^2c^2 = (\ h \ w \ )^2 - m_o^2c^4 [/tex].
[tex] p^2 = \frac{(\ h \ w \ )^2 - m_o^2c^4}{c^2} [/tex].
[tex] p^2 = \frac{(\ h \ w \ )^2}{{c^2}} - m_o^2c^2 [/tex].
[tex] p = \sqrt{ \frac{(\ h \ w \ )^2}{{c^2}} - m_o^2c^2} [/tex].
And this its the electron's momentum