Respuesta :
Answer:
L=2*10^-10m
Explanation:
we need to evaluate for a minimum energy:
Planck constant= h = 6,62607015 ×10 -34 kg⋅m2⋅s−1
1.5*10^-18J = 10eV
En= n^2h^2 / 8mL^2
for n=1 (minimum energy)
E1= h^2 / 8mL^2
so...
L^2= h^2/(8mE1)
L^2= (6.63*10^-34)^2 / [ 8(9.11*10^-31 )*(1.5*10^-18J )]
L^2= 4.02*10^-20
L= 2*10^-10 m
The length of the box in which the value of minimum energy of an electron is 1.5*10^-18 J is,
[tex]l=2\times10^{-10}\rm \; m[/tex]
What is kinetic energy?
Kinetic energy is a type of energy, which a body is posses due to its motion. The kinetic energy of the electron can be given as,
[tex]E_n=\dfrac{n^2h}{8ml^2}[/tex]
For ground level,
[tex]E_1=\dfrac{(1)^2h^2}{8ml^2}\\E_{min}=\dfrac{h^2}{8ml^2}[/tex]
The minimum energy of an electron is [tex]1.5\times10^{-18} \rm J[/tex]. As the value of plank constant is [tex]6.63\times10^{-34}\rm m^2kg/s[/tex] and the mass of an electron is [tex]9.1\times10^{-31}\rm kg[/tex].
Put the values in the above formula as,
[tex]1.5\times10^{-18} =\dfrac{(6.63\times10^{-34})^2}{8(9.1\times10^{-31})l^2}[/tex]
Solve this equation to get the value of length, we get,
[tex]l=2\times10^{-10}\rm \; m[/tex]
Hence, the length of the box in which the value of minimum energy of an electron is 1.5*10^-18 J is,
[tex]l=2\times10^{-10}\rm \; m[/tex]
Learn more about the kinetic energy here;
https://brainly.com/question/25959744