Respuesta :
Answer:
The golfball launched with an initial velocity of 200ft/s will travel the maximum possible distance which is 1250 ft when it is hit at an angle of [tex]\pi/4[/tex].
Step-by-step explanation:
The formula from the maximum distance of a projectile with initial height h=0, is:
[tex]d(\theta)=\frac{v_i^2sin(2\theta)}{g}[/tex]
Where [tex]v_i[/tex] is the initial velocity.
In the closed interval method, the first step is to find the values of the function in the critical points in the interval which is [tex][0, \pi/2][/tex]. The critical points of the function are those who make [tex]d'(\theta)=0[/tex]:
[tex]d(\theta)=\frac{v_i^2\sin(2\theta)}{g}\\d'(\theta)=\frac{v_i^2\cos(2\theta)}{g}*(2)\\d'(\theta)=\frac{2v_i^2\cos(2\theta)}{g}[/tex]
[tex]d'(\theta)=0\\\frac{2v_i^2\cos(2\theta)}{g}=0\\\cos(2\theta)=0\\2\theta=\pi/2,3\pi/2,5\pi/2,...\\\theta=\pi/4,3\pi/4,5\pi/4,...[/tex]
The critical value inside the interval is [tex]\pi/4[/tex].
[tex]d(\theta)=\frac{v_i^2sin(2\theta)}{g}\\d(\pi/4)=\frac{v_i^2sin(2(\pi/4))}{g}\\d(\pi/4)=\frac{v_i^2sin(\pi/2)}{g}\\d(\pi/4)=\frac{v_i^2(1)}{g}\\d(\pi/4)=\frac{(200)^2}{32}\\d(\pi/4)=\frac{40000}{32}\\d(\pi/4)=1250ft[/tex]
The second step is to find the values of the function at the endpoints of the interval:
[tex]d(\theta)=\frac{v_i^2sin(2\theta)}{g}\\\theta=0\\d(0)=\frac{v_i^2sin(2(0))}{g}\\d(0)=\frac{v_i^2(0)}{g}=0ft\\\theta=\pi/2\\d(\pi/2)=\frac{v_i^2sin(2(\pi/2))}{g}\\d(\pi/2)=\frac{v_i^2sin(\pi)}{g}\\d(\pi/2)=\frac{v_i^2(0)}{g}=0ft[/tex]
The biggest value of f is gived by [tex]\pi/4[/tex], therefore [tex]\pi/4[/tex] is the absolute maximum.
In the context of the problem, the golfball launched with an initial velocity of 200ft/s will travel the maximum possible distance which is 1250 ft when it is hit at an angle of [tex]\pi/4[/tex].
