Respuesta :
[tex]\displaystyle\lim_{\Delta x\to0}\frac{(x+\Delta x)^2-3(x+\Delta x)+2-(x^2-3x+2)}{\Delta x}[/tex]
Expand the numerator as
[tex]x^2+2x\Delta x+(\Delta x)^2-3x-3\Delta x+2-x^2+3x-2=(2x-3)\Delta x+(\Delta x)^2[/tex]
Then in the limit,
[tex]\displaystyle\lim_{\Delta x\to0}\frac{(2x-3)\Delta x+(\Delta x)^2}{\Delta x}=\lim_{\Delta x\to0}(2x-3+\Delta x)=\boxed{2x-3}[/tex]
The value of the limit is: 2x - 3.
------------------
- To make the typing easier, I am going to use [tex]\Delta_x[/tex] as h.
- Thus, we want to find the following limit:
[tex]\lim_{h \rightarrow 0} \frac{(x + h)^2 - 3(x + h) + 2 - (x^2 -3x + 2)}{h}[/tex]
Expanding the operations:
[tex]\lim_{h \rightarrow 0} \frac{x^2 + 2xh + h^2 - 3x - 3h + 2 - x^2 + 3x - 2}{h}[/tex]
[tex]\lim_{h \rightarrow 0} \frac{2xh - 3h + h^2}{h}[/tex]
[tex]\lim_{h \rightarrow 0} \frac{h(2x - 3 + h)}{h}[/tex]
Simplifying by h:
[tex]\lim_{h \rightarrow 0} 2x - 3 + h[/tex]
Replacing h by 0:
[tex]\lim_{h \rightarrow 0} 2x - 3 + h = 2x - 3[/tex]
The value of the limit is 2x - 3.
A similar problem is given at https://brainly.com/question/23882529