Respuesta :
Answer:
[tex]\omega_1 = 6.06 rad/s[/tex]
Explanation:
Initially rod is bent into L shaped at mid point
So we will have rotational inertia of the rod given as
[tex]I = \frac{mL^2}{3} + (\frac{mL^2}{12} + m(L^2 + \frac{L^2}{4}))[/tex]
[tex]I = \frac{5mL^2}{3}[/tex]
Now when rod becomes straight during the rotation
then we will have
[tex]I_2= \frac{(2m)(2L)^2}{3} = \frac{8mL^2}{3}[/tex]
now from angular momentum conservation we have
[tex]I \omega_o = I_1 \omega_1[/tex]
[tex](\frac{5mL^2}{3}) (9.7) = \frac{8mL^2}{3}\omega_1[/tex]
[tex]\omega_1 = 6.06 rad/s[/tex]
Answer:
The angular velocity of the straight rod is 4.85 rad/s.
Explanation:
Given that,
Initial angular velocity =9.7 rad/s
We need to calculate the initial moment of inertia of the rod
Using formula of moment of inertia
[tex]I_{i}=\dfrac{1}{3}(\dfrac{M}{2})r^2+(\dfrac{M}{2})r^2[/tex]
[tex]I_{i}=\dfrac{2}{3}Mr^2[/tex]
We need to calculate the final moment of inertia of the rod
Using formula of moment of inertia
[tex]I_{f}=\dfrac{1}{3}M(2r)^2[/tex]
[tex]I_{f}=\dfrac{4}{3}Mr^2[/tex]
We need to calculate the angular velocity of the straight rod
Using conservation of rotational kinetic energy
[tex]I_{i}\omega_{i}=I_{f}\omega_{f}[/tex]
Put the value into the formula
[tex]\dfrac{2}{3}Mr^2\times9.7=\dfrac{4}{3}Mr^2\times\omega_{f}[/tex]
[tex]\omega_{f}=\dfrac{2\times9.7}{4}[/tex]
[tex]\omega_{f}=4.85\ rad/s[/tex]
Hence, The angular velocity of the straight rod is 4.85 rad/s.