Respuesta :

The bounded region we're concerned with lies above the x-axis.

[tex]y^2-x^2=1\implies y=\sqrt{1+x^2}[/tex]

This hyperbola intersects with the line [tex]y=2[/tex] for

[tex]2=\sqrt{1+x^2}\implies4=1+x^2\implies x^2=3\implies x=\pm\sqrt3[/tex]

Using the washer method, the volume of the resulting solid is

[tex]\displaystyle\pi\int_{-\sqrt3}^3(2^2-(\sqrt{1+x^2})^2)\,\mathrm dx=2\pi\int_0^{\sqrt3}(3-x^2)\,\mathrm dx=\boxed{4\pi\sqrt3}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico