Match the pairs of polynomials to their products. (xy + 9y + 2) and (xy – 3) x2y2 + 3x2y – 7xy – 27x – 18 (2xy + x + y) and (3xy2 – y) 6x2y3 – 2xy2 + 3x2y2 – xy + 3xy3 – y2 (x – y) and (x + 3y) x3y + 3x2 + 3x2y2 + 7xy – 6 (xy + 3x + 2) and (xy – 9) x2 – 9y2 (x2 + 3xy – 2) and (xy + 3) (x + 3y) and (x – 3y)

Respuesta :

Answer:

Step-by-step explanation:

1) (xy+ 9y + 2) and (xy – 3)

Each term of second expression will be multiplied by first bracket.

xy(xy+9y+2) -3(xy+9y+2)

x²y²+9xy²+2xy-3xy-27y-6

x²y²+9xy²-xy-27y-6

2) (2xy + x + y) and (3xy2 – y)

3xy²(2xy+x+y) -y(2xy+x+y)

6x²y³+3x²y²+3xy³-2xy²-xy-y²

6x²y³ – 2xy² + 3x²y² – xy + 3xy³ – y²

3)  (x – y) and (x + 3y)

x(x-y) +3y(x-y)

x²-xy+3xy-3y²

x²+2xy-3y²

4) (xy + 3x + 2) and (xy – 9)

xy(xy + 3x + 2) -9(xy + 3x + 2)

x²y²+3x²y+2xy-9xy-27x-18

x²y²+3x²y-7xy-27x-18

5) (x2 + 3xy – 2) and (xy + 3)

xy(x2 + 3xy – 2) +3(x2 + 3xy – 2)

x³y+3x²y²-2xy+3x²+9xy-6

x³y+3x²+3x²y²+7xy-6

6) (x + 3y) and (x – 3y)

x(x + 3y) -3y(x + 3y)

x²+3xy-3xy-9y²

x²-9y² ....

Answer: (xy + 9y + 2) and (xy – 3) —> x3y + 3x2 + 3x2y2 + 7xy – 6

(2xy + x + y) and (3xy2 – y) —> 6x2y3 – 2xy2 + 3x2y2 – xy + 3xy3 – y2

(x – y) and (x + 3y) —> (x + 3y) and (x – 3y)

 (xy + 3x + 2) and (xy – 9) —> x2y2 + 3x2y – 7xy – 27x – 18

Step-by-step explanation:

I think that’s right I’m sorry if it’s not.

ACCESS MORE
EDU ACCESS
Universidad de Mexico