Answer:
4.58 m, θ = 49 degree
Explanation:
Vector 1
A = 5 m East
Vector 2
B = 4 m towards 30 degree west of north
write down the vectors in vector form
[tex]\overrightarrow{A}=5\widehat{i}[/tex]
[tex]\overrightarrow{B}=4\left (-Sin30\widehat{i}+Cos30\widehat{j} \right )[/tex][tex]\overrightarrow{B}=\left (-2\widehat{i}+3.464\widehat{j} \right )[/tex]
The resultant of these two vectors is
[tex]\overrightarrow{A}+\overrightarrow{B}=5\widehat{i}+\left (-2\widehat{i}+3.464\widehat{j} \right )[/tex]
[tex]\overrightarrow{A}+\overrightarrow{B}=3\widehat{i}+3.464\widehat{j}[/tex]
The magnitude of the resultant is given by
[tex]=\sqrt{3^{2}+3.464^{2}}=4.58 m[/tex]
Let the resultant vector makes an angle θ from X axis
So,
[tex]tan\theta =\frac{3.464}{3}=1.155[/tex]
θ = 49 degree