Answer:
The decibel level is 76 dB
Explanation:
We define the sound level through the equation:
β=10*㏒([tex]\frac{I}{Io}[/tex] )Equation 1
The constant Io is the reference intensity
Io=[tex]1*10^{-12} \frac{W}{m^{2} }[/tex]
I is the intensity in Watts for each square meter to which the sound level B corresponds, where B is measured in decibels (dB).
For this problem we have the following data:
I=[tex]3.6*10^{-5} \frac{W}m^{2} }[/tex]
Io=[tex]1*10^{-12} \frac{W}{m^{2} }[/tex]
We replace the data in equation 1:
β=10*㏒[tex]\frac{3.6*10^{-5} }{1*10^{-12} }[/tex]
β= 10*㏒*[tex]3.6*10^{7}[/tex]=75.56
β=76 dB
Answer: The decibel level is 76 dB