Answer:
4.0921 is the logarithm of the equilibrium constant.
Step-by-step explanation:
[tex]Fe^{2+} (aq) +2e^{-}\rightarrow Fe(s)[/tex]; E° = - 0.41 V
[tex]Ag^+(aq) + e^-\rightarrow Ag(s)[/tex]; E° = 0.80 V
Iron having negative value of reduction potential .So ,that means that it will loose electron easily and get oxidized.Hence, will be at anode.
[tex]E^{o}_{cell}[/tex]=Reduction potential of cathode - Reduction potential of anode
[tex]E^{o}_{cell}=E^{o}_c-E^{o}_a[/tex]
[tex]=0.80 V-(-0.41 V)=1.21 V[/tex]
[tex]Fe^{2+} (aq) + 2e^{-}\rightarrow Fe(s)[/tex]; E° = - 0.41 V
[tex]2Ag^+(aq) + 2e^-\rightarrow 2Ag(s)[/tex]; E° = 0.80 V
Net reaction: [tex]Fe(s)+2Ag^{+}\rightarrow Fe^{2+}+2Ag(s)[/tex]
n = 2
To calculate equilibrium constant, we use the relation between Gibbs free energy, which is:
[tex]\Delta G^o=-nfE^o_{cell}[/tex]
and,
[tex]\Delta G^o=-RT\ln K_{eq}[/tex]
Equating these two equations, we get:
[tex]nfE^o_{cell}=RT\ln K_{eq}[/tex]
where,
n = number of electrons transferred = 2
F = Faraday's constant = 96500 C
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = 1.21 V
R = Gas constant = 8.314 J/K.mol
T = temperature of the reaction = [tex]25^oC=[273+25]=298K[/tex]
Putting values in above equation, we get:
[tex]2\times 96500\times 1.21 V=8.314\times 298\times \ln K_{eq}[/tex]
[tex]\ln K_{eq}=9.3478[/tex]
[tex]\log K_{eq}=\frac{9.3478}{2.303}=4.0921[/tex]
4.0921 is the logarithm of the equilibrium constant.