Suppose the scores of a standardized test are normally distributed. If the population standard deviation is 3 points, what minimum sample size is needed to be 90% confident that the sample mean is within 2 points of the true population mean?

Respuesta :

Answer:  6

Step-by-step explanation:

Given : Level of confidence = 0.90

Significance level : [tex]\alpha=1-0.90=0.10[/tex]

Critical value : [tex]z_{\alpha/2}=1.645[/tex]

Margin of error : [tex]E=\text{ 2 points}[/tex]

Standard deviation: [tex]\sigma=\text{ 3 points}[/tex]

The formula to find the sample size : [tex]n=(\dfrac{z_{\alpha/2}\sigma}{E})^2[/tex]

[tex]n=(\dfrac{(1.645)(3)}{2})^2=6.08855625\approx6[/tex]

Hence, the minimum sample size needed= 6.

RELAXING NOICE
Relax