Answer:
[tex] 21.2\times 10^{-6}[/tex] T
Explanation:
[tex]i[/tex] = magnitude of current in each wire = 2.0 A
[tex]a[/tex] = length of the side of the square = 4 cm = 0.04 m
[tex]r[/tex] = length of the diagonal of the square = [tex]\sqrt{2}[/tex] a = [tex]\sqrt{2}[/tex] (0.04) = 0.057 m
[tex]B[/tex] = magnitude of magnetic field by wires at A and C
[tex]B = \left ( \frac{\mu _{o}}{4\pi } \right )\left ( \frac{2i}{a} \right )[/tex]
[tex]B = (10^{-7}) \left ( \frac{2(2)}{0.04} \right )[/tex]
[tex]B = 10\times 10^{-6}[/tex] T
[tex]B'[/tex] = magnitude of magnetic field by wire at B
[tex]B' = \left ( \frac{\mu _{o}}{4\pi } \right )\left ( \frac{2i}{r} \right )[/tex]
[tex]B' = (10^{-7}) \left ( \frac{2(2)}{0.057} \right )[/tex]
[tex]B' = 7.02\times 10^{-6}[/tex] T
Net magnitude of the magnetic field at D is given as
[tex]B_{net} = \sqrt{B^{2}+B^{2}} + B'[/tex]
[tex]B_{net} = \sqrt{2} B + B'[/tex]
[tex]B_{net} = \sqrt{2} (10\times 10^{-6}) + (7.02\times 10^{-6})[/tex]
[tex]B_{net} = 21.2\times 10^{-6}[/tex] T