Answer:[tex]\left ( \frac{9}{4},\frac{9\pi }{8} \right )[/tex]
Explanation:
The density at a point is proportional to its distance from the x axis
Writing equation in polar form
[tex]x=rcos\theta ,y=rsin\theta x^2+y^2=r^2,dA=rdrd\theta [/tex]
and [tex]\theta is (0,\frac{\pi }{2})[/tex]
[tex]\rho =ky=k\cdot rsin\theta [/tex]
where k is proportionality constant
Total mass ig given by
[tex]m=\iint_{}^{}\rho dA[/tex]
[tex]m=\int_{0}^{\frac{\pi }{2}}\int_{0}^{6}kyrdrd\theta [/tex]
[tex]m=\int_{0}^{\frac{\pi }{2}}\int_{0}^{6}krsin\theta rdrd\theta [/tex]
[tex]m=k\int_{0}^{\frac{\pi }{2}}sin\theta d\theta \int_{0}^{6}r^2dr[/tex]
[tex]m=k\left ( -cos\theta \right )_0^{\frac{\pi }{2}}\left ( \frac{r^3}{3}\right )_{0}^{6}[/tex]
m=72k
Also
[tex]M_y=\int \int x\rho dA[/tex]
[tex]M_y=\int_{0}^{\frac{\pi }{2}}\int_{0}^{6}rcos\theta ky\cdot rdr d\theta [/tex]
[tex]M_y=\int_{0}^{\frac{\pi }{2}}\int_{0}^{6}rcos\theta \cdot k\cdot rsin\theta \cdot rdr\cdot d\theta [/tex]
[tex]M_y=k\int_{0}^{\frac{\pi }{2}}sin\theta cos\theta d\theta \int_{0}^{6}r^3dr[/tex]
[tex]M_y=81k(2)=162k[/tex]
Similarly
[tex]M_x=\int \int y\rho dA[/tex]
[tex]M_x=\int_{0}^{\frac{\pi }{2}}\int_{0}^{6}rsin\theta krsin\theta \cdot rdr d\theta [/tex]
[tex]M_x=k\int_{0}^{\frac{\pi }{2}}sin^2\theta d\theta \int_{0}^{6}r^3dr[/tex]
[tex]M_x=k\int_{0}^{\frac{\pi }{2}}\frac{1-cos(2\theta )}{2}d\theta \left (\frac{r^4}{4} \right )_0^6[/tex]
[tex]M_x=\frac{k}{2}\left [ \theta -\frac{sin2\theta }{2} \right ]_0^\frac{\pi }{2}\cdot 324[/tex]
[tex]M_x=81k\pi[/tex]
Centre of mass co-ordinates is [tex]\bar{x},\bar{y}=\left ( \frac{M_x}{m},\frac{M_y}{m} \right )[/tex]
[tex]\left ( \frac{162k}{72k},\frac{81k\pi }{72k} \right )=\left ( \frac{9}{4},\frac{9\pi }{8} \right )[/tex]