The length, in words, of the essays written for a contest are normally distributed with a population standard deviation of 442 words and an unknown population mean. If a random sample of 24 essays is taken and results in a sample mean of 1330 words, find a 99% confidence interval for the population mean.

Respuesta :

Answer: [tex](1076.71\ ,1583.29)[/tex]

Step-by-step explanation:

Given : Level of significance : [tex]1-\alpha:0.99[/tex]

Then , significance level : [tex]\alpha: 1-0.99=0.01[/tex]

Since , sample size : [tex]n=24[/tex] , which is small sample (n<30) so the test applied here is a t-test.

Degree of freedom= [tex]n-1=24-1=23[/tex]

Using t-distribution table , Critical value : [tex]\text{t-score}=t_{n-1, \alpha/2}=2.807336[/tex]

Sample mean : [tex]\overline{x}=1330[/tex]

Standard deviation: [tex]\sigma: 442[/tex]

The confidence interval for population mean is given by :-

[tex]\overline{x}\pm t_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

[tex]1330\pm(2.807336)\dfrac{442}{\sqrt{24}}\approx1330\pm253.29=(1076.71\ ,1583.29)[/tex]

Hence,  a  99% confidence interval for the population mean.=[tex](1076.71\ ,1583.29)[/tex]

RELAXING NOICE
Relax