Answer: [tex](1076.71\ ,1583.29)[/tex]
Step-by-step explanation:
Given : Level of significance : [tex]1-\alpha:0.99[/tex]
Then , significance level : [tex]\alpha: 1-0.99=0.01[/tex]
Since , sample size : [tex]n=24[/tex] , which is small sample (n<30) so the test applied here is a t-test.
Degree of freedom= [tex]n-1=24-1=23[/tex]
Using t-distribution table , Critical value : [tex]\text{t-score}=t_{n-1, \alpha/2}=2.807336[/tex]
Sample mean : [tex]\overline{x}=1330[/tex]
Standard deviation: [tex]\sigma: 442[/tex]
The confidence interval for population mean is given by :-
[tex]\overline{x}\pm t_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]1330\pm(2.807336)\dfrac{442}{\sqrt{24}}\approx1330\pm253.29=(1076.71\ ,1583.29)[/tex]
Hence, a 99% confidence interval for the population mean.=[tex](1076.71\ ,1583.29)[/tex]