Answer:
(A) Investment of 6,700 discount payback period 1.82
(B) Investment of 8,800 discount payback period 2.34
(C) Investment of 11,800 discount payback period 3.06
Explanation:
We will discount each cash flow at 13%
[tex]\frac{4,000}{(1 + 0.13)^{1} } = PV[/tex]
3539.823
[tex]\frac{4,900}{(1 + 0.13)^{2} } = PV[/tex]
3837.4187
[tex]\frac{6,100}{(1 + 0.13)^{3} } = PV[/tex]
4227.606
[tex]\frac{5,300}{(1 + 0.13)^{4} } = PV[/tex]
3250.5893
We need to look at which year we get the investment amount
We will do: accumalted cash flow less investment
and then divide by the last year to get at which portion of this year we achieve payback period
(A) 6,700
3540 + 3837 = 7377
It will be between the first and second year
6,700 - 3,540 = 3160
3160/3837 = 0.8235
payback period 1.8235
(B) 8,800
3540 + 3837 + 4228 = 11605
It will be between second and third year
we do 8,800 - 7377 = 1423
1423/4228 = 0.3365
payback 2.3365
(C) 11,800
3540 + 3837 + 4228 + 3251 = 14856
It will be between third and fourth year
11,800-11,605 = 195
195/3251 = 0.0599 = 0.06
payback 3.06